# RC5032 5V to 3.3V Step-Down DC-DC Converter

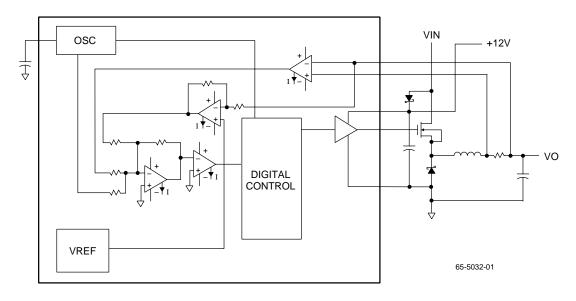
### Features

- >85% Efficiency
- Fast transient response
- Soft control power-up
- · Short circuit protection
- Output voltage fixed 3.3V

-AIRCHILD

SEMICONDUCTOR IM

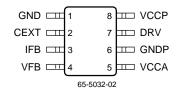
- Low TC reference voltage
- Adjustable oscillator frequency
- Drives N-Channel MOSFET
- 8 pin SOIC, 8 pin DIP package


### Applications

- 3.3V power supply for Pentium<sup>™</sup> based desktop CPU motherboards
- Minimum component DC-DC converters

## Description

The RC5032 is a step-down DC-DC controller IC dedicated to providing a 5V to 3.3V conversion for various types of CPU power. It can be configured with the proper applications circuitry to deliver load currents greater than 10 Amps. The RC5032 is designed to operate in a standard PWM control mode under heavy load conditions and as a PFM controller in light load conditions. Its highly accurate low TC reference eliminates the need for precision external components in order to achieve tight tolerance voltage regulation.


The programmable oscillator can operate from 200KHz to greater than 1MHz to provide for flexibility in choosing external components such as inductors, capacitors, and Power MOSFETs.



### **Block Diagram**

**PRELIMINARY INFORMATION** describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact Fairchild Semiconductor for current information.

### **Pin Assignments**



### **Pin Definitions**

| Pin Name | Pin Number | Pin Function Description                            |  |  |
|----------|------------|-----------------------------------------------------|--|--|
| GND      | 1          | Ground                                              |  |  |
| CEXT     | 2          | External capacitor for setting oscillator frequency |  |  |
| IFB      | 3          | Current Feedback Input                              |  |  |
| VFB      | 4          | Voltage Feedback Input                              |  |  |
| VCCA     | 5          | Analog VCC                                          |  |  |
| GNDP     | 6          | Power ground for high current driver                |  |  |
| DRV      | 7          | FET Driver Output                                   |  |  |
| VCCP     | 8          | VCC for FET output drivers                          |  |  |

### **Absolute Maximum Ratings**

(beyond which the device may be damaged)<sup>1</sup>

| Paramete | er            | Conditions | Min | Тур | Max | Units |
|----------|---------------|------------|-----|-----|-----|-------|
| VCCP     | Driver Supply |            |     |     | 13  | V     |

Note:

1. Functional operation under any of these conditions is NOT implied. Performance is guaranteed only if Operating Conditions are not exceeded.

# **Operating Conditions**

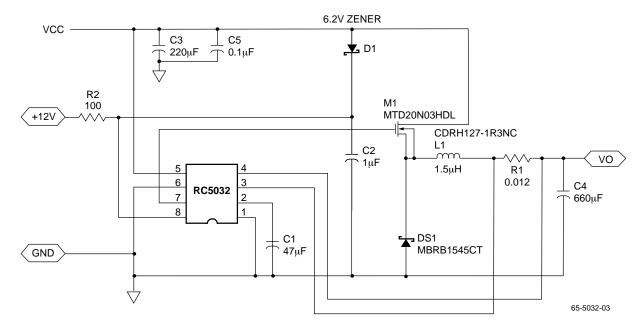
| Parameter |                           | Conditions | Min | Тур | Max | Units |
|-----------|---------------------------|------------|-----|-----|-----|-------|
| VCC       | Supply Voltage            |            | 4.5 | 5   | 7   | V     |
| VCCP      | Driver Supply             |            | 9   |     | 13  | V     |
| VIH       | Input Voltage, Logic HIGH |            | 2   |     |     | V     |
| VIL       | Input Voltage, Logic LOW  |            |     |     | 0.8 | V     |
|           | Ambient Temp              |            | 0   |     | 70  | °C    |

### **DC Electrical Characteristics**

(V<sub>CC</sub> = 5V, Fosc = 650 KHz, and T<sub>A</sub> = 0–70  $^{\circ}$ C)

| Parameter |                                  | Conditions                   | Min | Тур  | Max | Units |
|-----------|----------------------------------|------------------------------|-----|------|-----|-------|
| Vo        | Output Voltage                   |                              | 3.1 | 3.4  | 3.6 | V     |
| lo        | Output Current                   | See Figure 1 for application |     | 7    |     | A     |
| Vref Acc  | Reference Accuracy               |                              |     | 1    | 3   | %     |
| VTC       | Output Voltage TC                |                              |     | 40   |     | ppm   |
| LDR       | Load Regulation                  | 0.5 to 7A                    |     | 0.5  |     | %Vo   |
| LIR       | Line Regulation                  | V <sub>CC</sub> = ±5%        |     | 0.07 |     | %Vo   |
| VR        | Output Voltage Ripple            |                              |     | 30   |     | mV    |
| Cum Acc   | Cumulative Accuracy <sup>1</sup> | $T_{A} = 0 - 70^{\circ}C$    |     | 3    | 5   | %     |
| Eff       | Efficiency                       | lload > 4A                   | 85  | 88   |     | %     |
| lodr      | Output Driver I                  | Open Loop                    | 0.5 | 0.7  |     | A     |
| Pd        | Power Dissipation                |                              |     | 0.1  |     | W     |

Notes:


1. Output Voltage accuracy, Tempco, load regulation, ripple, and transient performance determine the Cumulative Accuracy.

## **AC Electrical Characteristics**

(V<sub>CC</sub> = 5V, Fosc = 650 KHz, and T<sub>A</sub> =  $25^{\circ}$ C)

| Parameter |                     | Conditions    | Min | Тур | Max | Units |
|-----------|---------------------|---------------|-----|-----|-----|-------|
| Tr        | Response Time       | II=0.5A to 7A |     | 10  |     | μs    |
| Fosc      | Oscillator Range    |               | 0.2 |     | 1.2 | MHz   |
| Osc Acc   | Fosc Accuracy       |               |     | 10  |     | %     |
| Dtc       | Max Duty Cycle      | PWM mode      | 90  | 95  |     | %     |
| Dtcm      | Min Duty Cycle      | PFM mode      |     |     | 100 | ns    |
| Iscp      | Short Circuit Prot  |               |     | 250 |     | mV    |
| Trimax    | Response to Imax    |               |     | 15  | 30  | μs    |
| Tssp      | Soft start response |               |     | 1   |     | ms    |

### **Test Circuit**

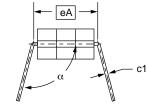


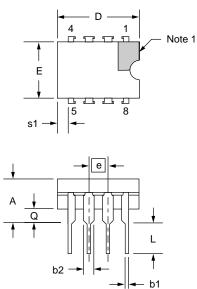


### Table 1. Components for RC5032

|                | RC5032 Standard Application Circuit Bill of Materials |                 |                        |  |  |  |
|----------------|-------------------------------------------------------|-----------------|------------------------|--|--|--|
| Ref Designator | Quantity                                              | Part No.        | Manufacturer           |  |  |  |
| L1             | 1                                                     | CDRH127-1R3NC   | Sumida                 |  |  |  |
| M1             | 1                                                     | MTD20N03HDL     | Motorola               |  |  |  |
| DS1            | 1                                                     | MBRB1545CT      | Motorola               |  |  |  |
| D1             | 1                                                     | 6.2V Zener      | any                    |  |  |  |
| R1             | 1                                                     | LRC-2512        | IRC                    |  |  |  |
| C3             | 1                                                     | OS-CON 10SA220M | Sanyo                  |  |  |  |
| C4             | 2                                                     | OS-CON 10SA330M | Sanyo                  |  |  |  |
| C2             | 1                                                     | 1uF             | Monolithic ceramic Cap |  |  |  |
| C1             | 1                                                     | 47pF            | SMD Cap                |  |  |  |
| C5             | 1                                                     | 0.1uF           | SMD Cap                |  |  |  |
| R2             | 1                                                     | 100Ω            | SMD Res                |  |  |  |

### Notes:


### **Mechanical Dimensions**


### 8 Lead Ceramic DIP Package

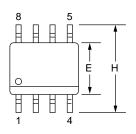
| Symbol | Inc  | Inches Millimeters |      | Millimeters |       |
|--------|------|--------------------|------|-------------|-------|
| Symbol | Min. | Max.               | Min. | Max.        | Notes |
| А      | _    | .200               | _    | 5.08        |       |
| b1     | .014 | .023               | .36  | .58         | 8     |
| b2     | .045 | .065               | 1.14 | 1.65        | 2, 8  |
| c1     | .008 | .015               | .20  | .38         | 8     |
| D      | _    | .405               | _    | 10.29       | 4     |
| Е      | .220 | .310               | 5.59 | 7.87        | 4     |
| е      | .100 | BSC                | 2.54 | BSC         | 5, 9  |
| eA     | .300 | .300 BSC           |      | BSC         | 7     |
| L      | .125 | .200               | 3.18 | 5.08        |       |
| Q      | .015 | .060               | .38  | 1.52        | 3     |
| s1     | .005 | _                  | .13  | _           | 6     |
| α      | 90°  | 105°               | 90°  | 105°        |       |

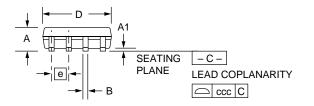
#### Notes:

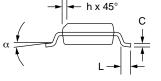
- 1. Index area: a notch or a pin one identification mark shall be located adjacent to pin one. The manufacturer's identification shall not be used as pin one identification mark.
- 2. The minimum limit for dimension "b2" may be .023 (.58mm) for leads number 1, 4, 5 and 8 only.
- 3. Dimension "Q" shall be measured from the seating plane to the base plane.
- 4. This dimension allows for off-center lid, meniscus and glass overrun.
- The basic pin spacing is .100 (2.54mm) between centerlines. Each pin centerline shall be located within ±.010 (.25mm) of its exact longitudinal position relative to pins 1 and 8.
- 6. Applies to all four corners (leads number 1, 4, 5, and 8).
- 7. "eA" shall be measured at the center of the lead bends or at the centerline of the leads when " $\alpha$ " is 90°.
- 8. All leads Increase maximum limit by .003 (.08mm) measured at the center of the flat, when lead finish applied.
- 9. Six spaces.






### Mechanical Dimensions (continued)


### 8 Lead SOIC Package


| Symbol | Inc      | hes  | Millimeters |      | Notes |
|--------|----------|------|-------------|------|-------|
| Symbol | Min.     | Max. | Min.        | Max. | Notes |
| А      | .053     | .069 | 1.35        | 1.75 |       |
| A1     | .004     | .010 | 0.10        | 0.25 |       |
| В      | .013     | .020 | 0.33        | 0.51 |       |
| С      | .008     | .010 | 0.20        | 0.25 | 5     |
| D      | .189     | .197 | 4.80        | 5.00 | 2     |
| Е      | .150     | .158 | 3.81        | 4.01 | 2     |
| е      | .050 BSC |      | 1.27        | BSC  |       |
| Н      | .228     | .244 | 5.79        | 6.20 |       |
| h      | .010     | .020 | 0.25        | 0.50 |       |
| L      | .016     | .050 | 0.40        | 1.27 | 3     |
| Ν      | 8        |      | 5           | 3    | 6     |
| α      | 0°       | 8°   | 0°          | 8°   |       |
| CCC    |          | .004 |             | 0.10 |       |

#### Notes:

- 1. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 2. "D" and "E" do not include mold flash. Mold flash or protrusions shall not exceed .010 inch (0.25mm).
- 3. "L" is the length of terminal for soldering to a substrate.
- 4. Terminal numbers are shown for reference only.
- 5. "C" dimension does not include solder finish thickness.
- 6. Symbol "N" is the maximum number of terminals.







### **Ordering Information**

| Product Number | Package | θ <b>JA</b> |
|----------------|---------|-------------|
| RC5032M        | 8 SOIC  | 85°C/W      |

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com